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AIIIU1Ict-EnaiDeering materials such as conc:retel, rocks and soils exhibit a strong strain-softening
behavior in the post-failure range, showing a sisnificant elutoplastic coupling for the depoadation
of clastic: modulus with increasing plastic def.lrmation. Stl'eIHpaa: fonnulation of plutic:ity bucd
on Drucker's stability postulate for these matcriala encounters difficuJties in modelina the soften­
ing/e1utoplutic couplina behavior; strain-space formulation is therefore neccaary for further
proaras. In this article we first introduce a general fonn ofstrain-space plasticity formulation which
is somewhat similar to that developed previously by Yoder and Iwan. To account for theelutoplutic
coupliDa efl'tct, the CODVlDtionai pluticity theory is combined with the fracturiq theory of Douaill
to Jive a more geDCI'B1 form ofstrain-apace formulation. Attempt is then made to apply the general
theory to model the softening behavior of a concrete element failed in a mixed crushing/cracking
mode.

I. INTRODUCTION

Many engineering materials such as concretes, rocks and soils exhibit a significant strain­
softening behavior beyond the peak or failure stress. Figure I shows a typical concrete
uniaxial compressive stress-strain curves obtained from a strain-controlled test. Each of
these curves has a sharp descending branch beyond the peak or failure stress. Consider the
descending branch or the softening behavior of a typical stress-strain curve shown in Fig.
2. As the strain increases, the stress must decrease, otherwise the materials would accelerate
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Fig. I. Complete compressive strcsa-strain curve.
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Fig. 2. Features of softening behavior.

to failure. However, ifthe strain is decreased instead of increased at point C, the stress must
still decrease but now along an elastic unloading line CH. Reloading would trace back the
unloading line until the yield stress at point C is reached. In the classical theory of plasticity,
the elastic properties are assumed to be independent of the plastic deformation, i.e. the
unloading-reloading line will follow the straight line that is parallel to the initial tangent
of the stress-strain curve. However, this is not true for granular type of materials like
concretes, rocks and soils, whose unloading-reloading behavior is much more complicated.
Figure 3 (Sinha et a/.[ I]) shows a typical uniaxial compressive stress-strain curve ofconcrete
under cyclic loading. As can be seen, the unloading-reloading curves are not straight line
segments but loops of changing size and decreasing average slope. An approximation of
this average slope is the slope of a line connecting the turning points of one cycle
(Dafalias[2]). Thus we may assume that the material behavior upon unloading and re­
loading is of linearly elastic (dotted lines in Fig. 3), but the elastic modulus (or the slope)
degrades with the increase of plastic deformation. This is called elastoplastic coupling
which becomes much more significant in the softening branch of a stress-strain curve. For
rocks and concretes, softening and loss ofstiffness are caused by progressive fracture.

The one-dimensional softening behavior is now generalized to a multiaxial state of
stress and strain in a similar manner to that of hardening behavior. We first discuss the
softening behavior in stress space. This will then be extended and lead to a discussion in
strain-space formulation. In a stress-space formulation, a state of stress is represented by
a point in stress space [Fig. 4(a)]. Ifthe state"A" is on the loading surface f =0, but the
material is still in the range of work-hardening, a stress increment dO' must point outward
in order to produce a plastic as well as elastic increment of strain. A stress increment
pointing inward would cause elastic strain only. The outward motion of the stress point
"A" carrying with it the yield surface corresponds to a hardening or ascending branch of
the stress-strain curve for an increasing stress in the one-dimensional. On the other hand,
if the material is in the range ofstrain-softening, plastic deformation causes the yield surface
to contract or move inward at the current stress point "C' [Fig. 4(a)]. This inward motion
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Fig. 3. Cyclic uniaxial compressive stress-strain curve.
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Fig. 4. Loading surfaces defined in (a) stress- and (b) strain-space.

corresponds to a softening or descending branch of the stress-strain curve for increasing
strain in the one-dimensional case. For elastic unloading, too, the stress increment dO' points
inward of the loading surface. Hence the stress-space fonnulation presents difficulty in
distinguishing between a reduction of stress which causes additional plastic deformation
and one due to elastic unloading. Referring to points A and C in Fig. 2, however, the strain
increment de is always positive for a plastic loading and negative for an elastic unloading
along either path AG or path CR. A generalization to the multidimensional case is shown
in Fig. 4(b), where the loading surface, F = 0, is a function of strains. For any strain point
(A or C, for example) on the loading surface, the strain increment de points outward,
representing a plastic loading case, and inward, representing an elastic unloading case.
There is no ambiguity. It seems clear that if strain is used as an independent variable in
formulating the plasticity constitutive relation, hardening and softening behavior may be
studied simultaneously. In fact, the advantages of strain-space plasticity have been recog­
nized by many researchers[2-S]. Specifically, a strain-space formulation has been given by
Yoder and Iwan[5] and by Casey and Naghdi[6]. It has been shown that many of the familiar
features of stress-space plasticity can be carried over to strain-space, although the stress­
space and strain-space formulations are not equivalent.

The impetus of this investigation is to model the softening behavior with elastoplastic
coupling effect. In this paper, we first introduce in Section 2 a general form of strain-space
formulation of plasticity which is somewhat similar to that developed previously by Yoder
and Twan[S]. But there is no elastoplastic coupling considered in Yoder and Iwan's for­
mulation. The fracturing theory discussed in Section 3 was proposed by Dougill[7, 8]. This
theory attributes the stiffness degradation of a granular type of material to the fracturing
process. To combine the plastic and fracturing theories, a more general strain-space for­
mulation, including elastoplastic coupling, is developed in Section 4. The consideration of
combining plastic and fracturing behavior is originally inspired by the plastic-fracturing
theory of Bazant and Kim[9], but the fonnulation presented here is entirely different.
Since the plastic-fracturing theory, fonnulated in stress- and strain-space simultaneously
encountered difficulties in defining a loading criterion, in Section 4, fonnulation is given in
strain-space only. The combined theory accounts for the plastic deformation and elasto­
plastic coupling, and can generally be applied to the entire range of loadings including
strain hardening and softening.

Attempt is also made here to apply the theory to model the softening behavior of
concrete material. This is described in Section 5 where a constitutive relation for concrete
is established. More details of the constitutive modeling of concrete may be found in Refs.
[10-12].

2. PLASTICITY FORMULATION IN STRAIN-SPACE

In order to fonnulate the theory in a relatively general fonn, the concept of external
variable and plastic internal variables[13] will be employed here to describe the state of a
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material point. In this development, we will consider only the rate-independent behavior
for an isothennal process, so that time and temperature will not appear in the fonnulation.

The loading surfaces (initial and subsequent yield surfaces) in strain space can be
generally expressed as

F(Eij' q.) = 0, (I)

where E,j is strain tensor. Since strains can be measured or observed, they are considered as
external variables. q. are the plastic internal variables or (PIVs). For elastic-plastic materials,
plastic strains E~, and plastic work WP are the most common PIVs. In addition, if we
consider a kinematic translation of the loading surface during a plastic loading, the coor­
dinates of the r~nter of a loading surface aij are also PIVs. Thus eqn (I) can be expressed
more definitely as

(2)

Another PIV, O'~, introduced in [5] as relaxation stress O'R, is related to ~. by the equation

(3)

where Cijkl is the isotropic tensor of elastic moduli. It has the fonn in the usual notation

(4)

and O'~j can also be considered as the residual stress with the sign reversed [see Fig. 5(a)].
Denote oij as the elastic response of total strain EIj such that

(5)

Thus the total stress 0' ij is the difference between oij and O'ij, i.e.

(6)

On the other hand, the total strain Eij is the sum of elastic and plastic strain
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Fig. S. Schematic description of plasticity fonnulation based on lI'yushin's postulate: (a) stress and
strain increments; (b) plastic work increment.
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in which sij is the elastic response to the total stress uij, Le.

where the elastic compliance tensor Dijkl is the inverse of C/jki , and has the form

939

(8)

(9)

The relations of these quantities are shown schematically in Fig. 5(a) for the one-dimensional
case and summarized in the following two equations:

(10)

(11)

Il'yushin's postulate[14] states that the work done by the external forces in a closed­
cycle of deformation of an elastoplastic material is nonnegative, Le. the work is positive if
plastic deformation takes place, and is zero if only elastic deformation occurs. The shaded
area in Fig. 5(a), d W, represents the work done in a deformation cycle A-B-C. According
to Il'yushin's postulate, we have

d W =1duy dSij ~ 0,

from which the normality rule or flow rule follows

aF
duy = dA. -a .

Sij

(12)

(13)

The normality rule for an unstable material has been discussed by Palmer et al.[I5]. Equation
(13) is known as the associated flow rule. More generally, consider a nonassociated flow
rule by assuming a plastic potential function 0 in strain-space such that

Thus

ao
dUij = dA. as ...

IJ

(14)

(15)

In eqns (13) and (15), dA. is a scalar determined by the consistency condition ofthe loading
surface (2) as

(16)

Inverting the incremental form of eqn (3) and recalling eqn (15),

By definition, the increment of the plastic work dW' is expressed as [see Fig. 5(b)]

ao
d W' = sij duij = dA. £%'1 -a .

Ski

(17)

(18)
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The rate of translation of the loading surface, doc,j , depends on a kinematic hardening rule.
If Zieglar's rule is adopted, then

(19)

in which c is a dimensional constant.
Substituting eqns (17) through (19) into eqn (16) and solving for dA., we have

(20)

where

[
aF aG aF aG aF JaG aGJh= - a~p D,""pqa~ + awp&kl-a-c-a (&,.-OC,.) -a.. -a'..
"mn "pq &41 £,. £1) £y

Substitution of eqn (20) into eqn (15) yields

(21 )

By using the incremental form of eqn (10) and substituting eqn (21) into eqn (10), the
general constitutive equation for the stress increment du,j is obtained as

(22)

The constitutive equations given by (20}-(22) are valid for the whole loading range, including
work-hardening and softening. In this formulation, the loading function F and the plastic
potential function G are expressed in strain-space and the material history is represented
by the plastic internal variables (PIVs) £~, W P and ocii'

3. PROGRESSIVE FRACTURING MODEL

An ideal material model, the so-called progressively fracturing solid, was proposed by
Dougill[7, 8]. This theory emphasizes on the modeling of stiffness degradation that occurs
during the progressive fracturing in a solid. Here, as in plasticity, Dougill begins by
introducing a fracturing surface in strain space as

(23)

which is assumed to enclose all the strain points that can be attained without further
fracturing. During the progressive fracture, the fracture surface expands in order to accom­
modate the additional strain states that can be reached by the linear elastic behavior alone.
Dougill proceeds to assume that the fractured material is perfectly elastic. Therefore, upon
unloading, the material returns to its initial *ess and strain-free state, and the original
dimensions are fully recovered [Fig. 6(a)]. Thus stress is related to strain at all times by
Hooke's law,

(24)

but the tensor of elastic moduli Ci1kl in eqn (24) will change due to a progressively fracturing
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loading process such that

Hence the stress increment dUij is the same as that of an elastic component

and the fracture stress decrement, denoted by - du~, has the form

941

(25)

(26)

(27)

On the other hand, the Il'yushin's postulate requires that the work done upon applying and
removing dtij be nonnegative, Le.

(28)

The L1W is shown as the shaded area in Fig. 6(a). Note that in the figure the difference
between AC and DB (dul) is of a higher-order infinitesimal, and can therefore be neglected
in the work calculation. Following the similar arguments to that used in the development
of the theory of plasticity, we obtain the flow rule, for a progressively fracturing solid,

of
du~ = d).:;-.

utij
(29)

The consistency condition of the loading surface is then used to determine the scalar
function d)',

of dH
dF =- dty - - d WI = 0

Otij r dWI '
(30)

where d WI is the shaded area indicated in Fig. 6(b). It has the value d WI = ! du~tij'
Substituting eqn (29) into the expression for dWI and using this results in solving eqn (30)
for dA., lead to

(31)

and thus, we have

(32)

~ 40' = 40 -----l
(a)

1---40

(b)

E

Fig. 6. Progressive fracturing theory [7. 8] : (a) stress and strain increments; (b) fracturing work.

SAS 22:8-G
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Recalling that dal) = daij +(- da{;), and using eqn (26) yields

(33)

This is the general constitutive equation for a progressively fracturing solid.
In order to determine the stiffness degradation rate dCjj41 in eqn (27), Dougill further

proposes that the change in stiffness caused by an increment of deformation dE,) is
independent of the deformation path. By using this postulate, as well as eqns (27) and (32),
an expression for dCjj41 was obtained.

Dougill's fracturing material model assumes that no plastic deformation occurred
during loading, and that the nonlinearity is purely induced by the stiffness degradation of
the material. However, this theory is fundamentally different from the nonlinear elasticity
theory. In Dougill's theory, he assumes the existence of a fracturing surface in strain-space
and determines the so-called fracture stress decrement da~ by the normality (or flow) rule.
On this account, the stiffness degradation dC,ik, is not a given material property but rather
a consequence of the "fracturing flow rule", Le. dC j ;41 is attributed to a fracturing process.
Thus the fracturing theory is similar to the basic concept of classical plasticity theory and
therefore belongs to the realm of plasticity.

4. PLASTIC-FRACTURING FORMULATION IN STRAIN-SPACE

As mentioned above, the progressively fracturing theory assumes that the material
nonlinearity, either hardening or softening is due solely to the degradation of the fractured
material stiffness. In contrast, the classical theory of plasticity assumes that the nonlinearity
is due solely to the irreversible deformation induced by slip and that the elastic properties
remain unchanged during loading.

For rock-like materials such as concrete, the situation is much more complicated.
Both fracturing and slip in the aggregate-eement interface exist, resulting in an irrecover­
able deformation and a stiffness degradation. To model the behavior of this type of
materials, the plastic-fracturing theory, combining the classical theory of plasticity with
the fracturing theory, was proposed by Bazant and Kim[9]. In this theory, the stress
increment dO'jj was assumed to comprise three components [Fig. 7(a)] as

da'i = daij-daj}-da{;,

where dO'ij is the elastic response to the total strain increment, i.e.

in which daj} is the stress increment related to the plastic strain increment as

(34)

(35)

(36)

while dO'~ is the stress increment due to stiffness degradation [see eqn (45)], and is related
to the fracturing strain increment as

(37)

In eqns (35}-(37), Cijkl is the tensor of current elastic moduli.
We may define the elastic strain increment d6lj as the elastic response to the total stress

increment, i.e.

(38)

where Dijkl is the tensor of current compliance, the inverse of tensor Clj4"
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Fig. 7. Schematic description of the combined formulation: (a) stress and strain increments; (b)
plastic-fracturing work.

From eqns (34)-(38), a relation for the strain increments d8i!' dtij, dt~, dSV, can be
obtained as

d8i! = d8q+dSV+d8~. (39)

In contrast, it should be noted here that the total strain BIj comprises only two parts, B~ and
8ij and eqn (7) holds. ~ is the plastic (permanent) strain, while sq is the recoverable strain
or elastic strain. All these quantities of stresses and strains in one-dimensional case are
illustrated inFig. 7(a).

According to the plastic-fracturing theory by Bazant and Kim, the incremental stress
components day, and du{ are determined by flow rules based on Drucker's postulate and
Il'yushin's postulate, respectively. Their theory defines a loading surface in stress-space,
and a loading surface in strain-space, independent ofeach other. Thus their theory is flexible
and allows much room to fit the experimental data. However, the loading criterion is quite
complicated and somewhat confusing, because during softening, no unique criterion can
be defined in stress- and strain-space simultaneously. Nevertheless, the idea of combining
these two theories is advisable, and therefore adopted here, but the formulation in what
follows will be quite different.

Herein, we assume a loading surface in strain-space, with a form similar to that of eqn
(2) but the plastic work WI' is replaced by WP! and the kinematic translation of the loading
surface will not be considered here, i.e.

(40)

where WP! is the plastic-fracturing work which is the total energy dissipation during loading
and unloading [Fig. 7(b)].

Il'yushin's postulate requires that the work done in a deformation cycle, d W, be
nonnegative. The dW is shown by a shaded area in Fig. 7(a). Denote duff as the sum of
plastic stress increment, day, and fracturing stress increment, du{, i.e.

do-( = du~+du'u

then,

and the normality rule (or flow rule) is represented as

DF
duff = d)' -;-.

uBi!

(41)

(42)

(43)
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For a more general formulation, we may assume a nonassociated flow rule as

(44)

Now the problem is reduced to the determination of the stress components: du~ and dU{J'
Observe that in Fig. 7(a) the fracturing component du{ depends on the rate of the

stiffness degradation, i.e.

(45)

In modeling the elastoplastic coupling behavior, Dafalias[2, 3] assumed that the elastic
properties depend on the previous plastic deformations. Here we may further assume that
the elastic stiffness tensor Cijkl is a function of plastic-fracturing work WpJ,

(46)

Then the rate of stiffness degradation can be expressed as

By definition [see Fig. 7(b)], the energy dissipation dWpJ is represented by

d WpJ = ~"",(du~"+! du~).

Then the stiffness degradation dCijkl is obtained as

Substitution of eqn (49) into (45) leads to

(47)

(48)

(49)

(50)

After some tensor manipulations of eqn (50), the relation between fracturing stress
increment du{ and total inelastic stress increment duff, can be obtained in the form

du{ = T{l;1 duft,

where T{kl can be viewed as a transformation tensor, and is expressed by

in which the tensor Mij,"" is the inverse of tensor MIj"'" and

while N,""kl is defined as

As can be seen from eqn (41) that d~ is related to duff by the equation

(51 )

(52)

(53)

(54)

(55)
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T~kt = HO/kc5j/+bi/bjk)- Ttkl'

As soon as tbe relationsbips between tbe stress increments dut, du~ and duff have been
establisbed, the scalar dl in eqn (44) can be derived from tbe consistency condition in the
usual manner. Here, as in eqn (20), dl bas tbe same form as

(56)

but the scalar function h bas tbe form

Substituting eqn (56) into eqn (44), recalling that

dUij =dolj - dUf,

and noting that

we obtain the constitutive equation for a plastic-fracturing solid

(57)

which has the same form as that of eqn (22).
The general formulation given above is valid for the whole range ofloading conditions

(hardening or softening) suitable for modeling the stress--strain behavior ofmaterials with
elastoplastic coupling.

5. EXAMPLE IMPLEMENTATION TO CONCRETE MATERIALS

Although the strain-space formulation provides a theoretically consistent form suitable
for material modeling in both hardening and softening ranges, it is still not a simple matter
to apply it in engineering applications. The present main difficulties are to define properly
the scalar functions for an actual material such as concrete. These include: (1) tbe loading
function F in strain-space, (2) the plastic potential function G in strain-space, and (3) the
stiffness degradation rate Ci/ll' There is very little good and comprehensive experimental
data for materials like concrete in the softening range. In order to apply the theory to
concrete, for example, some restriction and further assumptions have to be made. The
application of the present theory to concrete materials is described below.

At present we win restrict our attention to model the softening behavior ofa concrete
element failed in a mixed (cracking and crushing) mode. In the mixed mode of failure, the
element is subjected to a compressive loading with its maximum principal stress nonpositive,
so tbat no major cracks will be developed in the concrete element. Further, to avoid the
failure mode due to crushing, its maximum principal strain at failure is assumed always
positive. Details of this can be found elsewhere (Hsieh et 01.[16]).

As for the definition of loading surface in strain-space, Bazant and Kim proposed a
loading function that has the same form as that ofDrucker-Prager loading surface in stress­
space, while Dougill[l7] assumed a linear function of strain components that represents a
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single hyperplane in deformation space:

(58)

where the coefficients .A.ij are constants, and k is a positive scalar function of the energy
dissipation W.

According to the experimental observations, a prominent feature of post-failure
behavior of concrete is a relatively rapid dilation of the overall volume. Such a dilation is
due mainly to the voids within the body of the material which are caused by a fracture
propagation process. Based on this observation, the volume dilation may be used as a
loading criterion in the post-failure range. Here we propose a simple loading function in
strain-space in the form

(59)

Equation (59) is a special case of eqn (58). It represents a plane perpendicular to the
hydrostatic axis &II = &22 = &33 in strain-space. k is a function ofplastic and fracture energy
dissipation WP/, representing the current volumetric strain of the material.

Loading condition related to the loading surface (59) implies that if a concrete element
is confined such that no volume dilation occurred, then there will be no stress relaxation
either; even the element may proceed to deform distortedly. In fact, the choice of a loading
surface with either Drucker-Prager's form, or a linear form as eqn (58), or simply the form
of eqn (59), requires more experimental evidence.

As for the parameter representing the elastoplastic coupling, a general formulation has
been given previously and the key parameter is the stiffness degradation rate tensor Cijkl'

This quantity could be obtained from experimental measurements. Herein, for simplicity,
we shall assume the elastic response of the material remains isotropic. Thus the elastic
tensor Ciikl has two independent constants (E and v), as does the degradation rate tensor
C;jkl' The rate of Young's modulus E, and Poisson's ratio v' could be obtained by a strain­
controlJed uniaxial compression test.

As for the choice of a proper plastic potential function G. we note that the normality
rule associated with the loading surface eqn (59) leads to only the hydrostatic tension stress
components in the plastic-fracturing stress duf (Fig. 7). Since the plastic-fracturing stress
duff can be considered as the relaxed stress tensor during softening and the incremental
volume dilation under compressive loading condition is caused mainly by shear or deviatoric
stress components. it follows that strain-softening behavior of concrete should be
accompanied by hydrostatic as well as deviatoric stresses relaxed. In view of this, a non­
associated flow rule is used in this development. The plastic potential function G is assumed
to have the form

G = a.I'I +.jF;-k' =O. (60)

where'l is the first invariant of strain tensor. 1'2 is the second invariant of strain deviatoric
tensor and a. and k' are constants.

In summary. three assumptions are made in the following development: (i) the volu­
metric strain is used to define the loading surface. (ii) elastic behavior is isotropic. and (iii)
plastic potential function is of Drucker-Praaer type.

From the loading function given in eqn (59), we have

of
of!, =0;

u

of elk
oWP/= - dWPI" (61)

Substituting eqn (61) into eqns (56) and (57). leads to

(62)
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where

(63)

and S~j is the strain deviatoric tensor.
The transformation tensors T';"rtJcl and Tf"",k/ defined in Section 4 can be calculated if the

stiffness degradation rate CUki is known. Assuming elastic isotropy, we can express C'ij/c/ in
the form

C, C2 C2 0

C2 C. C2

[C'] = C2 C2 C1 (64)

C3

C3

0 C~

where

E(I-v) , 2v(2-v)
C, = (l+v)(I-2v) +Ev (l+v)2(1-2v)2'

Ev 1+2v2

C2= (l +v)(I-2v) + Ev' (l +v)2(1-2v)2'

E Ev'
C3 = 2(1 +v) 2(1 +V)2'

in which E and vare the current values ofYoung's modulus and Poisson's ratio, respectively,
E is the degradation rate of Young's modulus and v' is the rate of Poisson's ratio.

With C''*' known, elastic stiffness matrix Cljl" in eqn (62) can be updated in each loading
step.

In order to predict softening behavior for a specific material, the material characteristics
must be given, including the rate of energy dissipation, d W,ffdic, and the rate of elastic
constants E, v'. Spooner and Dougill[18] performed an experimental study on the behavior
of concrete in uniaxial compression and attempted to define a quantitative measurement
ofdamage in concrete. They reported that the energy dissipation due to microcracking and
stiffness degradation can be expressed as a function of strain as shown in Fig. 8(a). Based

dW
Pf

wy dr

" 120••:;
0 100..,
~

0; _( E V -E: _ y ) 2
c:
0 80

0;' IJ;;
•... 60..•Ci 40
~..... 20•c:

ILl

.2 .4 .6 .8 E V EV

~y-l
"Strain

(a) (b)

Fig. 8. (a) Energy dislipated in UDiaxiaI comprasion[18]. (b) Energy dissipation rate as fUDCtion of ~.
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on this experiment, the energy dissipation rate d WI/Idle may be shown in Fig. 8(b) and
expressed as a function of volumetric strain,

d WP/ I' ,. l/PJ'-- = (1 e- (e -co-y
dk 0

(65)

where (10 is the maximum energy dissipation rate, f!' is the volumetric strain, eo is the
volumetric strain corresponding to peak stress, and y, Pare constants.

As for the rate ofelastic constants, E', v', no experimental data are available. Dafalias[2]
reported a theoretical study that started from the second law of thennodynamics and the
consistency condition in strain-space, derived two inequalities which served as guidelines
for the selection ofthe degradation rate ofthe two constants E and y'. However, the normality
rule and von Mises or Tresca types of loading conditions had been used in his derivation, so
that the results cannot be used here directly. Nevertheless, experiments do show that Young's
modulus E decreases while Poisson's ratio y increases during strain-softening. Therefore E'
and y' are taken as negative and positive values, respectively.

The above formulation has been coded in the material subroutine. Some of the model
predictions are given in Figs. 9 and 10. A reasonable trend of the predicted softening stress­
strain curves can be observed.

6. SUMMARY AND REMARKS

General forms of strain-space plasticity formulations applied to strain-hardening­
softening material with or without elastoplastic coupling have been developed. The use of
strain-space plasticity overcomes the difficulties encountered in the application of stress­
space plasticity to strain-softening modeling.

The impetus of this study is to find a method to model the post-failure behavior of
concrete materials, because concrete failed in a mixed mode that could soften in a muitiaxial
form associated with elastoplastic coupling. In these cases the microcracks or fractures are
generally not strongly directionally oriented but may distribute randomly, and cause a
multiaxial loss in strength and stiffness. The strain-space plasticity theory provides a rational
tool in modeling the softening behavior. However, difficulties arise in the application of the
theory to an actual material such as concrete, because a realistic loading surface in strain­
space is hard to define due to lack of experimental data.

As an attempt, the loading surface proposed herein is simply the volumetric strain
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Fig. 9. Predicted softening stress-strain curve (using Kupfer's data(l91).
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because concretes do exhibit volume dilation behavior during failure. This model works
reasonably well in biaxial and triaxial compressive loadings with a relatively low hydrostatic
compressive stress. However, in high hydrostatic compressive stress region, which may
result in crushing failure, this loading criterion may not be adequate. As more and more
experimental data regarding softening behavior of concrete will be available in the future,
it is possible to find a more rational shape of the loading surface in strain-space and to
describe its evolution more clearly during strain-softening.
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